4.1.2 Groundwater Analytical Results

Four groundwater samples were collected during the groundwater evaluation investigation. The groundwater samples were analyzed for total xylene using USEPA Method 8020. Total xylene was detected in three of the four groundwater samples. The concentrations of xylene ranged from not detected in Monitoring Well JLM032 to 220 micrograms per liter (ug/L) in Monitoring Well PZX-1. The xylene concentrations in the groundwater are illustrated on Figure 7. The groundwater analytical results are summarized in Table 3 and the laboratory analytical reports are contained in Appendix C.

4.2 QUALITY ASSURANCE/QUALITY CONTROL

Analytical results of the subsurface and groundwater samples collected during the Groundwater Evaluation Study were evaluated using the United States Environmental Protection Agency (USEPA) Contract Laboratory Program National Functional Guidelines for Organic Data Review (NFGO), (USEPA 1993). The quality assurance/quality control review included laboratory method blanks, trip blanks, matrix spike/matrix spike duplicates (MS/MSD), field duplicates, and equipment rinsate blanks.

The quality assurance/quality control results are listed below.

- Chain-of-Custody forms were signed by the relinguisher and reviewer.
- All analyses were performed as requested.
- All samples were analyzed within the required 14 day holding times.

- All laboratory method blanks for the sampling events contained no positive detections of the target analysis.
- No positive detections of the target analyte were reported in the rinsate blanks.
- There were no positive detections of the target analytes in the trip blanks.
- All surrogate percent recovery were within the required QC limits.

Based on the results of the quality assurance/quality control review, the data are valid for use (as qualified) in reporting the results of the investigation. The quality assurance/quality control review is presented in Appendix D.

* * * * *

5.0 CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSIONS

5.1.1 Subsurface Soil Sampling

A subsurface soil sample was collected from the north, south, east, and west sides of the Xylene Site. FPX was encountered in the Soil Boring JLM029, which is south of the Xylene Site within 25 feet of the pumping station. Soil Sample JLM029-1 indicated the presence of this FPH by the elevated levels of xylene (2,700,000 ug/kg) in the soil sample. Low concentrations of xylene (below 1300 ug/kg) were detected in Soil Samples JLM031-1 and JLM032-1, which are located to the east and north of the Xylene Site. Xylene was not detected in Soil Sample JLM030-1, which is located to the west of the Xylene Site.

5.1.2 Groundwater Sampling

FPX was encountered in Monitoring Wells JLM029, PZX-2, PZX-3, PZX-4, PZX-5, PZX-6, PZX-7, and PZX-8. These monitoring wells were not sampled because of the presence of FPX. In addition, Monitoring Well PZX-9 was not sampled because the screened interval is below the water table.

A groundwater sample was collected from Monitoring Wells JLM030, JLM031, JLM032 and PZX-1, and analyzed for total xylene. The concentration of xylene in the groundwater samples ranged from below detection limits (less than 2 ug/L) to 220 ug/L. These xylene concentrations are significantly below the USEPA MCL of 10 mg/L or 10,000 ug/L.

5.2 RECOMMENDATIONS

The results of the groundwater evaluation at the Xylene Site indicate that the approximate extent of the xylene associated with the xylene release has been defined. Therefore, no additional investigation activities are proposed for the Xylene Site.

In order to mitigate further migration of the FPX and increase the recovery of FPX, Amoco implemented the installation of the wellpoint/VRD recovery system. The wellpoint/VRD system was installed along the northern and western fencelines of the Xylene Site in order to provide gradient control and recover the FPX. The FPX is being used in conjunction with the existing recovery well (RWX-1) previously installed at the Xylene Site. The location of the wellpoint/VRD recovery system is illustrated on Figure 8.

Since the approximate extent of the xylene at the Xylene Site has been delineated and the wellpoint/VRD recovery system is in operation, no further action, with the exception of the recovery system operation and maintenance, is recommended.

* * * * *

6.0 REFERENCES

- Burns & McDonnell Waste Consultants, Inc., December 1995, <u>Groundwater Evaluation Study</u>

 <u>Plan for the Amoco Pipeline Xylene Site, Amoco Corporation, Hammond, Indiana.</u>
- United States Environmental Protection Agency (USEPA), 1988, <u>Guidance for Conducting</u>

 <u>Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final</u>,

 USEPA/540/6-89/004, OSWER Directive 9355.3-01.
- United States Environmental Protection Agency (USEPA), 1986, <u>Test Methods for Evaluating</u>

 <u>Solid Waste</u>, Third Edition, as amended by Update I (Federal Register, August 31, 1993),

 SW-846.
- Watson, L.R., Shedlock, R.J., Banaszak, K.J., Arihood, L.D., Doss, P.K., 1989, Preliminary
 Analysis of the Shallow Groundwater System in the Vicinity of the Grand Calumet
 River/Indiana Harbor Canal, Northwestern Indiana: U.S. Geological Survey Open-File
 Report 88-492, 45 p.

* * * * *

TABLES

Table 1 Relative Groundwater Elevations Amoco Xylene Site Hammond, Indiana

Monitoring		TOC	Depth to	Depth to	Corrected	Total
Well		MSL	Product	Groundwater	Groundwater	Depth
Location	Date	(ft.)	(ft.)	(ft.)	Elevation (ft.)	(ft.)
PZX-1	05/07/96	588.06	trace	5.08	582.98	16.83
	05/08/96		trace	5.05	583.01	16,83
PZX-2	05/07/96	588.16	4.92	5.56	583.16*	19.41
	05/08/96		4.95	5.53	583.13*	19.41
PZX-3	05/07/96	587.53	4.35	6.38	582.92*	18.40
	05/08/96		4.35	6.33	582.92*	18,40
PZX-4	05/07/96	585.43	2.32	6.95	582.51*	17.50
	05/08/96		2.28	7.05	582.53*	17.50
PZX-5	05/07/96	583.75	0.95	1.03	582.79*	16.15
	05/08/96		0.94	1.00	582.80*	16.15
PZX-6	05/07/96	585.46	2.46	8.26	582.25*	13.76
	05/08/96		2.49	8.32	582.21*	13.76
PZX-7	05/07/96	585.00	1.96	4.66	582.69*	17.28
	05/08/96		1.98	4.65	582.67*	17.28
PZX-8	05/07/96	588.15	4.66	5.75	583.35*	20.03
	05/08/96		4.69	5.77	583.32*	20.03
PZX-9	05/07/96	585,68		3.67	582.02	NM
	05/08/96			3.63	582.05	NM
JLM029	05/07/96	585.64	2.74	3.16	582.85*	11.04
	05/08/96		2.74	3.88	582.75*	13.10
JLM030	05/07/96	584.75	-	1.21	583.54	10.20
	05/08/96			1.38	583.37	14.15
JLM031	05/07/96	584.84	trace	1.87	582.97	14.40
	05/08/96		trace	1.92	582.92	16.25
JLM032	05/07/96	583.65		0.95	582.70	12.60
	05/08/96		_	0.91	582.74	15.91

Notes:

$$Zaw = (1 - rp)Zpw + rp Zap$$

Zaw = Corrected elevation of air/water interface

rp = Density of product (0.83 for diesel)

Zpw = Elevation of product/water interface

Zap = Elevation of air/product interface

^{-- =} Not measurable with interface probe.

^{*} Groundwater elevations adjusted for presence of product using:

Table 2 Soil Analytical Results Amoco Xylene Site Hammond, Indiana

Sample	Date	Depth	Total Xylenes
No.	Sampled	Sampled (ft)	(µg/kg)
JLM029	5-1-96	1 to 3	2,700,000
TB	5-1-96	NA NA	U (2)
JLM030-1	5-2-96	2 to 4	U (2)
JLM031-1	5-2-96	1 to 3	320
JLM031-6	5-2-96	1 to 3	460
JLM031-ERB	5-2-96	NA	U (2)
TB5296	5-2-96	NA NA	U (2)
JLM032-1	5-3-96	1 to 3	1300 E
JLM032-1	5-3-96	1 to 3	630
TB5396	5-3-96	NA	U (2)

µg/kg = Micrograms per kilogram

NA = Not applicable

U (2) = Not detected above practical quantitation limit (PQL)

E = Concentration reported for this compound exceeds the calibration range of the instrument JLM031-6 is a duplicate of JLM031-1.

Note: Sample JLM032 was not homogeneous and therefore, was analyzed twice.

Sample JLM031-ERB is a equipment rinsate blank of the decontaminated split spoon from Sample JLM031-1.

Table 3 **Groundwater Analytical Results Amoco Xylene Site** Hammond, Indiana

Sample	Date	Total Xylenes				
No.	Sampled	(µg/L)				
MW-JLM030 GW-1	5-8-96	53				
MW-PZX0 GW-1	5-8-96	52				
MW-JLM031 GW-1	5-8-96	110				
MW-JLM32 GW-1	5-8-96	U (2)				
MW-PZX1 GW-1	5-8-96	220				
MW-JLM031 GW-ERB	5-8-96	U (2)				
TB 5-8-96	5-8-96	U (2)				

 μ g/L = Micrograms per liter U (2) = Not detected above the practical quantitation limit (PQL)

TB = Trip blank

Note: MW-PZX0 GW-1 is a duplicate of MW-JLM030 GW-1.

MW-JLM031 GW-ERB is a equipment rinsate of a disposal bailer.

FIGURES

ř

APPENDIX A

DRILLING LOGS

Project Name, Amoco Xylene Project Number 95-465-4-501 Ground Elevation NM Location South of Pumping Station Air Monitoring Equipment OVM 580B # MSA 360	Boring Number JLM 029 A
Ground Flevation	
NM South of Pumping Station	Page / of /
Air Monitoring Equipment OVM 580B # MSA 360	Total Footage
Drilling Type Hole Size Overburden Footage Bedrock Footage	No. Of Samples No. Of Core Boxes
HSA 91.25 I.D. 10.0	4 0
Drilling Company Fox Drilling Driller (s) Gary Drilling Rig ATI (- Om F 5-5 Type of 6 of 1	
Orilling Rig ATV - CME 55. Type of Sampler Split Date $5/i/96$ To $5/i/96$ Field Observer (s)	Span 2" x2" Scott Koll.
Depth (feet) Class Blow Recov. Run/ Sample	PID (ppm) Remarks/
Description Count Time Desig.	BZ BH S Water Levels Start B:45a -
]
Topsoil, dock brown. SAND fine to making a little c-sand 17/ 19	0 0 4.8 PM
	6 2 122
black, strong petaloun ador Boke 18	
3-]	
SAND, fine te medium, black, 10 26 24 24 2	O 2.1 7384 PID
4 strong petroleum odor	U LET
5	5.5 124 pp
SAND, medium to coarse, black 3 4 6- Wet, strong petroleum ador 4	0 24 2170 PID
5AND, medium to course, black 6-wet, strong petroleum odor 3. 3. 4.	O / LEL
7-	5.5 Bo /m ==
8-3	
	0.5 62 1380 Pin
9	O Nm Nm LEZ
9 5 7 4	55- NL
	215. (/21)
Total Depth 10.0'	Backfilled
	boring with-
12-	60.5 feet.
	Backfilled boring with- bentonite to 0.5 feet. Apphalt to surface.
13-	Sur feece.
BZ=Breathing Zone BH=Bore Hole S=Sample	Burns Waste

_					_	Log							
Project	Amoco -	Xylene	Project Num	nber 95	- 44	5-4-	501		Boring	Number -	JLM	ರ ಿನಿ9	
Ground	Elevation 585)	n with at Xy						Page		1	of Z	2 2
	toring Equipment	0Vm 580B &	msA		1,500	Proceedings			Total F	ootage	18	3.0	
D	rilling Type	Hole Size	Overburder		е	Bedrock	Footage	•	No. O	Samples		No. Of Core Bo	xes
}	tsa	4.25" I.D.	18.0	2		. 2	>			5		0	
Orilling (Company Fo	ox Dilling	<u> </u>		<u> </u>	riller (s)	Ġ	Avy	You	ikey			
Oritling f		CME 55			S	ype of ampler	Split	- 5p.		4			
Date O	945 5	1196 10 1130	5/	i 196	F	ield Observ	er (s)	<u> 3c</u>	≈ 	Kello			
Depth (feet)		Description		Class	Blov Coun		Run/ Time	Sample Desig.	BZ	PID (ppm	n) S	Remarks Water Lev	
	Asphalt a	on Surface.									<u> </u>	STANKED G:4	152-
, -	,												-
	Topsoil d				17								-
2-	SLAG, stro	ing Patroleum ado	· (Ī	50 to	~		١ ,	0	Nm	2803	Pin (ppn)	_
	<u></u>				3"			`					-
3-			1: :				· · · · · · · · · · · · · · · · · · ·			Sparlss.		1 *	
-	Strong petr	edium to course, roleum odor	black		5/	12			4.5	20.4	3407 1080	PID (ppm)	=
4-	1 1				15			2	O			Let (%)	-
					23	3 24							-
5-	SAND, med	dium lo zoarse, 1	ola clc		12/	_					·····		-
6-	strong pe	chium to coarse, l etroleum odor			16/	16		2	0	60	342	PID (ppm)	_
	V				No	124		3	0	0	Hm	LELL(%)	-
7-	, ,				/4				3.5	- 161	PI-		
													-
8-												THE RESERVE OF THE RE	_
1					•							The second secon	-
9-													_
													-
10-	SAND F	re to medium, gr			7.								
,,]	wet	, J.	1		15/	18		4	٥	160	107 870	PID (P/~)	-
11-					14	1 24		7	0	0	•	LEZ (%)	-
12-	ž				/12	2			ک ،ک	ط.1 -	15-		_
16.					-						••		-
13-													_
]													-
14 -	Breathing Zone	BH=Bore Hole S=	Sample		<u> </u>			<u> </u>					
04	OLEGUING TONG	Director 3-	Compie			٦.						Burns	Waste isultants

& Waste
Consultants
McDonnell Inc.

Drilling Log Continuation

	שווווחם	LU	, 00	11(111	uu t		,			
					<u> </u>		+	g Numbe		Lm029
Project	7-11-2						Page		of	2
Project	Number 95-465-4-1501	· · · · · · · ·					Date	5/	1196	
Depth (feet)	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	BZ	PID (p	pm)	Remarks/ Water Levels
-									,	3
]										
15 -	CAN'N C Gray linet	 								
	SAND, fine. grey, wet.						0	96	104.4	PiD (ppin) LEZ (c/b)
14-	·					5	O	0	Nm	Lit(%) -
]										
17-		<u> </u>					3.5	- 2.1	-	
										Completed -
le 🖹										
	Total Depth @ 18.0'							-		Installed 15'
	/									of 2" Stamps steel screen -
19 -										1
										a depth of :
70-										a depth of
										Lesur.]
21										Growel pades
										695- 62060 R]
22						:				pulled s to
]										0.8 ft. pgs Cenant to surface.
23										Cenant &
										Growtod Grotective
[[[Protective]
24 -										cover flush - Tinislee well @ 3:00p
										tinished well
15										@ 3:00p
]										‡
=										
]
-]										‡
\mathbf{I}		ŀ								
]
	:									
										<u>E</u>
]
[
		<u> </u>	1							<u> </u>

& Consult

BZ=Breathing Zone

BH=Bore Hole

S=Sample

				וווזט	ıng	Log						
Project Name	Amoca	o Xylene.	Project Num	nber Gi	- 46	25-4-	501		Boring	Number	JU	n 030
Ground Eleva	ion .	1,86 Location	"West a						Page	1		of []
Air Monitoring	Equipment	OVM 5801	٠.	Msa	- 1	1			Total i	Footage	18	
Drilling		Hole Size	Overburde	n Footag		Bedrock Footage			No. C	of Sample	No. Of Core Boxes	
H SA		4.25" I.D.	18.0	0		- 0		<u> </u>		5		0
Drilling Compa Drilling Rig	Type of States									/		
	161.				s	ampler ield Observ	,	,	<u>یں م ک</u> 11	. 13		
1 ,	77.0											
Depth (feet)		Description		Class	Blo Coun		Run/ Time	Sample Desig.	BZ	ВН	T s	Remarks/ Water Levels
= Asp.	half or	Surface.									.1	Starte - 7:15a
۔ ا	suil.			表	7-30	9/12	-		c	Nm	12.4	Pin
3- ode	ND, fin	e, black, wet,	petroleun		5777			2	0	Nn	273	Pro
4-1			•		7							-
5 JAA 6 Pe	ID, med troleum	ion to coarse, blac odor	k, wet,		2-12-1	10 24		3		14 ·		۲۰۰۵
7 8 1											/ }	
10 - SA/ 11 - WX	VD, fin	e to medium, gre	— — — H,		3/6/6	16 24		4	0	9,4 0)	12.0 Um	PID -
12-1									<i>J</i> 2	. <i>U</i> .	- 11-	-
8Z=Breati	ing Zone	BH=Bore Hole S=S	Sample	<u> </u>							····	Burns Waste

& Waste
Consultants,
McDonnell Inc.

Drilling Log Continuation

							Borin	g Number . T	m 030
Project I	Name Amoro Xylone						Page		2
Project I							Date	5/2/96	
Don't			Blow		Run/	Sample		PID (ppm)	
Depth (feet)	Description	Class	Count	Recov.	Time	Desig.	BZ	BH S	Remarks/ Water Levels
	SAND, fire to medium, grey, wet								
]	, , , , , , , , , , , , , , , , , , ,								
15			, i						
‡			4/9/0/9	24			0		P10(1/~)
14-			9	24		5	<i>A</i>	a NA	LECLOS) -
1			9	24			\mathcal{C}	UMA	LEL COS)
17-			9				55.	0 11-	
ויי ד								• •	13 16 DE 7: JULI
	·								Installed 15' Stunless steet
18		٤							Strinless steet
=	Total Depth @ 18.0'								schen to
\exists									to surf.
]									Screen uns
4									10-56+ -
7									Gravel packs to 1.5 ft
1	•								10 15 Ft
\exists									1'bankente
4									pellis.
╡				l .					const a -
4									Elush ment
									pellets. conset to - suff- Flush ment cover. Completed
4									Completia
ュ									10:30p
4									•
7									
3									
4	·								
ヸ									-
‡							*		
									-
=									
크									-
‡									
‡									
듹									
]									
于									
4									
	Breathing Zone BH=Bore Hole S=Sample				<u> </u>	<u> </u>			Burns Waste

<u> </u>				ing	Log				
Project Name A WOO	io - Xylene	Project Nu	mber <i>G</i>	5-1	He5-4	-50	j	Boring Number	TLM 031
583	1.21	"East	of f	um	ping S	Lutio	N	Page /	of 2
Air Monitoring Equipment	DVM 580B		15A		1			Total Footage	8'
Orilling Type	Hole Size	Overburde		ge	Bedrock		е	No. Of Samples	No. 01 Core Boxes
MSA Delina Caracan	4.25" I.D.	18.	0			2		5	0
	Fox Drilling	-			Driller (s)		try	Yockey	
Date 5/2/96	CME 55 0	Ici or	フ		Type of Sampler Field Observ				2"
Depth Depth	1.0 >/3	176 1	30				I	elt Kelb	
(feet)	Description		Class	Blo Cou		Run/ Time	Sample Desig.		Remarks/ S Water Levels
Bravel on	Surface	· · · · · · · · · · · · · · · · · · ·						32 311	
1=									
Topseil				2				0 0.9 11	4.1 PID
2- SAND, m	edium, black			2579	16 24		1.	DO NI	1 .
]				7	29		'		
3-1-(44)	1 . //			9				3.5- 4.2 pp	
petroleum	drum, black, we	*+ <i>j</i>		1	16			Nm Nm 35	·] -
4-				1-1-11-9	24		2	NM NM N	m Liel _
5 =				9				35. 13.3	_{[P} _
SAND, f.	ne la median.	Jack,		4				0 6.4 100	
6- Very Wet.	ne to mediam to	em odor		3	12		3	0 0 NI	· · · · · · · · · · · · · · · · · · ·
1	0			4/3/-/1	24				
7-				1				5.5. 16.4 p	· /
		!							
8-]	•								-
4									
9-									-
10 =							İ		
SAND, A.	iz, grayish black	c wed		マ				0 17.5 126	AID =
11 - petroleum	ie, greyish black odor Lodor net	the		3/7/9/80			11	B O Nm	1 1
Some its i	- JLM 029 8 JLA	n030)		9			7	<i>B C N</i>	
12-	·			8	_			5.5- 1.6	
1]
13-									.
14									
BZ=Breathing Zone	BH=Bore Hole S=S	ample							Burns Waste

Burns Waste
& Consultants
McDonnell Inc.

Drilling Log Continuation

							Borin		M 031
olect	Name Amoco Xylene						Page		2
olect	Name Amoco Xylene Number 95-465-4-501					·	Date	5/3/9	ان
epth feet)	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	BZ	PID (ppm)	Remarks/ Water Leveis
5									
ن ن	SAND, fine to medium, grey, wet	-	1/4/1/5	24		5	D	41.8 59.9	PID
7 - 1			15	24			35.	-14	
<u>2</u>									C 0.5.8
4 -	Total Depth @ 18.0'								Completed
									Installed 15' of 2"
1									standen stalte 170 kiss to suf.
	•					-		· ·	to suf.
1	•								Gravel part to 1.75 1' benont pellets
1									cover. Completed 9:45 a
1								•	cover.
1									9:45 ~
1									
1							٠		
4									
4									

& Waste
Consultants
McDonnell Inc.

		my	Log				
HMOCO XVIene	Number 9	5-4	165-4	-50))	Boring Number	n-032
Ground Elevation Se3, 81 Location Nor		\cap	n ping	- [\ \	_	Page	of \mathcal{Q}
Air Monitoring Equipment DVM 580B		nsit	1 79	0 (00)		Total Footage 19	
	urden Foota		Bedrock	Footage		No. Of Samples	No. Of Core Boxes
	9.0		0)		5	0
Drilling Company Fox Dilling	·		riller (s)	<u>C</u>	4.y	Yockey	
Drilling Rig ATV CME 155		<u> 5</u> ,	ype of ampler		plit	Space 2	c)
Date 5/3/96 9130 To 5/3/96		Fi	ield Observ	er (s)	50	et Kelb	- 1
Depth (feet) Description	Class	Blow Coun		Run/ Time	Sample Desig.		Remarks/ Water Levels
Gravel on Surface				I		BZ BH S	Start @ 9:302
,]							
- SLAG, blue & white		12				2 64 6	Pid (ppm)
2-		12/19/57	24		1	0 1.3 84.0	
-			24		'		1
3-		21				5.5 - 1.3	PID(pp-)
]							
4-]		 	-				-
	_	9/6/-17	9			0 1.3 39.1	Pib
5- SAND, medium, grey, wet		5	24		2	~ ~	
		2				35 - Am	Pio
6-1		2	+				-
7_		3	12		2	0 12.3 1.3	Pio
']		16/80	24		3	0 4 Nm	LEZ -
8-1		8				5.5- 0	PID
- 1						·	-
9-]							
1							
10-1							
SAND, Fine to medium, gray, wet		2)-/3/4	14			0 5,8 0.9	۲۰۵
11-		1			4	Bo ilm	LEC
<u>, </u>		4	24			5.5 - 1.3	
12-						دنا " درل	
13.1							
13-							=
14 -							
BZ=Breathing Zone BH=Bore Hole S=Sample							

Burns Waste
& Consultants
McDonnell Inc.

Drilling Log Continuation

							T_		-	
	<u> </u>						+	Number	31	m 032
roject i							Page	2	of 3	
roject !	Number 95-465'-4-501					· ·	Date		13/90	<i>p</i>
Depth (feet)	Description	Class	Blow Count	Recov.	Run/ Time	Sample Desig.	BZ	PID (pp	m) s	Remarks/ Water Levels
	SAND fine to medium, grey,									
15 -			3	<i>a</i> 1		`	0	0.9	0	P10
16-			3/4/4/4	24		5-	0	0	0 Nm	LET -
17			14		· · · · · ·		5.5	- O.	ο Ρήρ	-
76										
<i>18</i> –										-
19	Total Depth @ 19.0'									Completed dulling at 11:30m
70-										Installed 15
1										Stool Screen
-						•				17.0: Riser to Sent
1										to a depth 17.0! Riser to Sent. Sand pack - to 1.67' bgs
										1111 1 7
- 1										Jellets. Grout (cening to surface Tristalled protessing Casing Casing Completed) Well 12:45
111										Installed protesting casia
Liti										Completed
1										
-										
1111										•
1111	·									-
1										

BZ=Breathing Zone BH=Bore Hole S=Sample

APPENDIX B

MONITORING WELL CONSTRUCTION DIAGRAMS

APPENDIX C

LABORATORY ANALYTICAL RESULTS

May 25, 1996

Burns & McDonnell Scott Kolb 999 Oakmont Plaza Drive

Westmont, IL 60559

Dear Scott Kolb:

Please find enclosed the analytical results of the samples received at our laboratory on May 02, 1996. This report contains sections addressing the following information at a minimum:

-Definitions

-Analytical Results

-Analytical Methodology

-Chain-of-custody (if applicable)

-State certifications

IEA Project#: L72960720

Client Project: 95-465-4-50

Purchase Order#:

IEA Quote#:

Site:

Copies of this analytical report and supporting data are maintained in our files for three years; samples are retained for two weeks unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact Jim Dowse at (800) 933-2580 for any additional information. Thank you for utilizing our services, we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Sina@relv

Larry D. Lewis

Director of Operations IEA-Illinois Laboratory

Definitions of Data Qualifiers

Organic Analysis

- **B** This analyte was detected in the method blank associated with this sample. The concentration reported in the method blank is suspected to contribute to the reported concentration of the analyte in the sample.
- E The concentration reported for this compound exceeds the calibration range of the instrument.
- H This sample had one or more surrogate recoveries above the acceptance criteria due to coelution with a nontarget compound.
- J The reported concentration for this compound is an estimated value. When associated with tentatively identified compounds (TICs), the result is quantitated based on a response factor of 1. When the flag is associated with a calibrated target compound, the compound has been positively identified and the reported concentration is above the method detection limit (MDL), but below the practical quantitation limit (PQL).
- L This sample had one or more surrogate recoveries below the acceptance criteria due to matrix effects. This effect was confirmed through a second analysis of the sample.
- LI The recovery of the internal standard corresponding to this compound did not meet the acceptance criteria due to matrix effects. This effect was confirmed through a second analysis of the sample.
- T1 The chromatographic profile of this sample does not match that of a gasoline standard. Another unidentifiable petroleum product is present in this sample. Quantitation is based on a gasoline standard calibration.
- T2 The chromatographic profile of this sample does not match that of a diesel fuel standard. Another petroleum product is present in this sample. Quantitation is based on a diesel fuel standard calibration.
- U This compound was not detected in the sample above the PQL.
- UD This compound was not detected above the elevated PQL in this diluted analysis.

Inorganic Analysis

- E The reported value was estimated due to the presence of interference.
- M Duplicate injection precision was not met.
- N Spiked sample recovery was not within control limits.
- S The reported value was determined by the Method of Standard Additions(MSA).
- W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis was not within control limits.
- +- Correlation Coefficient for the MSA is less than 0.995.

Sample Summary

IEA-Illinois Laboratory ID Client ID

L72960720-001 L72960720-002

JLM029 TB

IEA Job#: L72960720

Project ID: 95-465-4-50

Matrix: Soil
Method: 8020A

Purgeable Aromatic Compounds-BTEX GC Volatiles Analysis µg/Kg - Dry Weight

Percent Solids	1	100%	
- Dilution Factor	10000	1	
Method Blank	VV050796	VV050796	
Client ID	JLM029	Method Blank	PQL
Analyte Lab ID	001	VV050796	
Total Xylenes	2700000	U	
Surrogate Recovery	98%	91%	
Date Sampled	5/1/96		65-135 %
Date Analyzed		5/7/96	

PQL = Practical Quantitation Limit

IEA Job#: L72960720

Project ID: 95-465-4-50

Matrix: Water
Method: 8020A

Purgeable Aromatic Compounds—BTEX GC Volatiles Analysis $\mu g/L$

	Dilution Factor	1	. 1		
	Method Blank	VV050796	VV050796		
	Client ID	ТВ	Method Blank		PQL
Analyte	Lab ID	002	VV050796		
Total Xylen	es	U	·U		2
Surrogate R	Recovery	92%	91%		75-125%
	Date Sampled	5/1/96			
	Date Analyzed	5/8/96	5/7/96		

PQL = Practical Quantitation Limit

Purgeable Aromatics--Xylenes

Matrix Spike/Matrix Spike Duplicate

Matrix: Soil

Date Analyzed: 5/7/96

IEA Sample ID: BATCH MS

	Spike	Sample	Matrix Spike	
	Added	Concentration	Concentration Concentration	
Compound	(ug/Kg)	(ug/Kg)	(ug/Kg)	Recovery
Total Xylenes	150	<2	97	65%

	Spike	Matrix Spike Dup		
	Added	Concentration	centration %	
Compound	(ug/Kg)	(ug/Kg)	Recovery	Difference
Total Xylenes	150	105	70%	8%

% Recovery Limits: 65-135 % % Difference Limits: +/- 20 %

Purgeable Aromatics--Xylenes Matrix Spike/Matrix Spike Duplicate

Matrix: Water

Date Analyzed: 5/7/96

IEA Sample ID: BATCH QC

	Spike	Sample	Matrix Spike	
	Added	Concentration Concentration		%
Compound	(ug/L)	(ug/L)	(ug/L)	Recovery
Total Xylenes	150	<2	153	102%

	Spike	Matrix Spike Dup		
	Added	Concentration %		%
Compound	(ug/L)	(ug/L)	Recovery	Difference
Total Xylenes	150	153	102%	0%

% Recovery Limits: 75-125% % Difference Limits: +/- 20 %

Response Factor Report GC

Method : K:\CHEMSTN\GCV\METHODS\PVOCSOIL.M

Title : PVOC in Soil; Calib. Date: 5/7/96 Last Update : Tue May 14 13:26:55 1996 Response via : Initial Calibration

Calibration Files

2ppb =GCV5853.D 5 =GCV5854.D 10 =GCV5855.D

50 =GCV5856.D 100 =GCV5857.D

	RT	Compound	2ppb	5	10	50 [°]	100	Avg RF	%RSD
	4)7.11 5)9.89 6)10.12 7)10.77 8)11.61 9)12.73	MTBE BENZENE aaa-Trifluorotoluene TOLUENE ETHYLBENZENE M-PXYLENE 0-XYLENE BROMOFLUOROBENZENE 135-TRIMETHYLBENZENE	1.3 411.0 1.1 803.5 1.2 1.1 989.4 848.6	1.2 362.4 1.0 768.0 1.1 1.0 932.4 828.5	1.2 444.2 1.1 799.2 1.1 1.0 911.8 956.6	1.2 425.4 1.1 880.8 1.1 1.0 938.1 1155.2	1.2 412.4 1.1 841.0 1.1 0.9 906.0 2 1111	411.1 E3 1.1 E6 818.5 E3 1.1 E6	4.75 7.37 2.80 3.53 4.04 7.47 3.53 E3 15.19
-									

(#) = Out of Range

. PVOCSOIL.M

Mon May 20 16:00:48 1996

							,	·	į	HCL	1	,							<i>:</i>		·		,			,		-
							1-96	Remarks	YOR jar. None	Viel Youil - Inis Blacks										The state of the s						Ice Present in Container:		Burns Waste 022194 form WCI-OP1
y Record	Document Control No.:	Lab. Reference No. or Episode No.:	ı	Sie V			The state of the s	Δ	×	×														Special Instructions:		Condition of Shipping Container: Good X Fair Poor		B
Chain of Custody		cur.	53100	Sample Type	Matrix a	T	pil sı	Co Ces Ces	× ×	*											/			Specia		e/Ime Condition o	Date/Time Comments:	
ysis and		Center	77	7	× XI Give		Collected	te Time	96 (015	154 NM X								25					. '			S S S		
Chemical Anal	IEA		Sche	ect Name:	My		(in feet)		3 5/1	- 5/11			- Children			V.	*	7						S. # 16.1		ived By:		
Request for Chemical	Laboratory	Address	Oily/State/Lip	Proj		Samo	(j.	From]					\ 	**										Rece	Rece	
Ä						Sample Event			1476	1556				/										JAM-		Date/Time 5/1/96 - 1600	' Date/Time	
	If s, Inc. nue, Suite 200	nsas 66210 7 33	New		or SWMU Name:	San		Œ	1	1			/							-				Sant		(signature)	(signature)	
	urns & McDonne Naste Consultant 3881 Lowell Aver	verland Park, Kansas 66210 ₃I: (816) 333-8787 ax: (816) 822-3463	ttention: M.	roject Number:	te Group, or SW	nole Nu		Point Designator	3	TB 5196	- (7.00		ampler (signatura):	ampler (signature):	elinquished By:	elinguished By:	

May 25, 1996

Burns & McDonnell Scott Kolb 999 Oakmont Plaza Drive

Westmont, IL 60559

Dear Scott Kolb:

Please find enclosed the analytical results of the samples received at our laboratory on May 03, 1996. This report contains sections addressing the following information at a minimum:

-Definitions

-Analytical Results

-Analytical Methodology

-Chain-of-custody (if applicable)

-State certifications

IEA Project#: L72960732 Client Project: 95-465-4-501

Purchase Order#:

IEA Quote#: Site:

Copies of this analytical report and supporting data are maintained in our files for three years; samples are retained for two weeks unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact Jim Dowse at (800) 933-2580 for any additional information. Thank you for utilizing our services, we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Larry D. Lewis

Sincere

Director of Operations IEA-Illinois Laboratory

> Monroe, Connecticut 203-261-4468

N. Billerica, Massachusetts 508-667-1400 Whippany, New Jersey 201-428-8181 Cary, North Carolina 919-677-0090

Definitions of Data Qualifiers

Organic Analysis

- B This analyte was detected in the method blank associated with this sample. The concentration reported in the method blank is suspected to contribute to the reported concentration of the analyte in the sample.
- E The concentration reported for this compound exceeds the calibration range of the instrument.
- H This sample had one or more surrogate recoveries above the acceptance criteria due to coelution with a nontarget compound.
- J The reported concentration for this compound is an estimated value. When associated with tentatively identified compounds (TICs), the result is quantitated based on a response factor of 1. When the flag is associated with a calibrated target compound, the compound has been positively identified and the reported concentration is above the method detection limit (MDL), but below the practical quantitation limit (PQL).
- L This sample had one or more surrogate recoveries below the acceptance criteria due to matrix effects. This effect was confirmed through a second analysis of the sample.
- LI The recovery of the internal standard corresponding to this compound did not meet the acceptance criteria due to matrix effects. This effect was confirmed through a second analysis of the sample.
- T1 The chromatographic profile of this sample does not match that of a gasoline standard. Another unidentifiable petroleum product is present in this sample. Quantitation is based on a gasoline standard calibration.
- T2 The chromatographic profile of this sample does not match that of a diesel fuel standard. Another petroleum product is present in this sample. Quantitation is based on a diesel fuel standard calibration.
- U This compound was not detected in the sample above the PQL.
- UD This compound was not detected above the elevated PQL in this diluted analysis.

Inorganic Analysis

- E The reported value was estimated due to the presence of interference.
- M Duplicate injection precision was not met.
- N Spiked sample recovery was not within control limits.
- S The reported value was determined by the Method of Standard Additions(MSA).
- W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis was not within control limits.
- +- Correlation Coefficient for the MSA is less than 0.995.

Sample Summary

IEA-Illinois Laboratory ID Client ID

L72960732-001	JLM031-6
L72960732-002	JLM031-1
L72960732-002	JLM030-1
L72960732-004	JLM031-ERB
L72960732-005	TB 5296

IEA Job#: L72960732

Project ID: 95-465-4-501

Matrix: Soil
Method: 8020A

Purgeable Aromatic Compounds—BTEX GC Volatiles Analysis µg/Kg - Dry Weight

Percent S	olids 74%	73%	72%	100%	100%	
Dilution Fa	ctor 5	5	1	1	1	
Method B	lank VV050796	VV050796	VV050696	VV050696	VV050796	
Clier	t ID JLM031-6	JLM031-1	JLM030-1	Method Blank	Method Blank	PQL
	b ID 001	002	003	VV050696	VV050796	
Total Xylenes	460	32.0	U	U	U	2
Surrogate Recovery	88%	65%	71%	101%	91%	65-135 %
Date Sam	pled 5/2/96	5/2/96	5/2/96			
Date Anal	yzed 5/8/96	5/8/96	5/6/96	5/6/96	5/7/96	

PQL = Practical Quantitation Limit

IEA Job#: L72960732

Project ID: 95-465-4-501

Matrix: Water
Method: 8020A

Purgeable Aromatic Compounds--BTEX GC Volatiles Analysis µg/L

Dilution Factor	1	1	1	
Method Blank	VV050796	VV050796	VV050696	
		TB	Method	
Client ID	JLM031-ERB	5296	Blank	PQL
Analyte Lab ID	004	005	VV050696	
Total Xylenes	U	U	U	2
Surrogate Recovery	99%	101%	101%	75-125%
Date Sampled	5/2/96	5/2/96		
Date Analyzed	5/6/96	5/6/96	5/6/96	

PQL = Practical Quantitation Limit

Purgeable Aromatics--Xylenes Matrix Spike/Matrix Spike Duplicate

Matrix: Soil

Date Analyzed: 5/7/96

IEA Sample ID: BATCH MS

	Spike	Sample	Matrix Spike	
:	Added	Concentration	Concentration Concentration	
Compound	(ug/Kg)	(ug/Kg)	(ug/Kg)	Recovery
Total Xylenes	150	<2	97	65%

	Spike	Matrix Spike Dup		
	Added	Concentration	%	%
Compound	(ug/Kg)	(ug/Kg)	Recovery	Difference
Total Xylenes	150	105	70%	8%

% Recovery Limits: 65-135 % % Difference Limits: +/- 20 %

Purgeable Aromatics--Xylenes

Matrix Spike/Matrix Spike Duplicate

Matrix: Water

Date Analyzed: 5/7/96

IEA Sample ID: BATCH QC

	Spike	Sample	Matrix Spike	
	Added	Concentration	Concentration	%
Compound	(ug/L)	(ug/L)	(ug/L)	Recovery
Total Xylenes	150	<2	153	102%

	Spike	Matrix Spike Dup		
	Added	Concentration	%	%
Compound	(ug/L)	(ug/L)	Recovery	Difference
Total Xylenes	150	153	102%	0%

% Recovery Limits: 75-125% % Difference Limits: +/- 20 %

Response Factor Report GC

Method : K:\CHEMSTN\GCV\METHODS\CALCURVS\042996.M

Title : PVOC in Soil; Calib. Date 4/29/96
Last Update : Mon Apr 29 12:12:54 1996
Response via : Initial Calibration

Calibration Files

2ppb =GCV5680.D 5 =GCV5681.D 10 =GCV5682.D

=GCV5683.D 100 50 =GCV5684.D

RT	Compound	2ppb	5	10	50	100	Avg	%RSD
5)9.89 6)10.12 7)10.77 8)11.61	MTBE BENZENE aaa-Trifluorotoluene TOLUENE ETHYLBENZENE M-PXYLENE 0-XYLENE BROMOFLUOROBENZENE	1.5 477.2 1.2 779.8 1.1 981.5 773.6	1.6 503.9 1.3 830.3 1.2 1040.2 848.2	1.6 507.2 1.3 833.9 1.2 2 1015 863.3	1.6 584.9 1.4 940.2 1.3 .7 1124	1.5 557.4 1.3 901.7 1.2 1.2 10' 3 979.	526.1 E3 1.3 E6 857.2 E3 1.2 E6 72.1 1046. 5 893.6 E3	10.73
•	135-TRIMETHYLBENZENE 124-TRIMETHYLBENZENE						.6 974.0 E 700.8 E3	

(#) = Out of Range

042996.M

Mon May 20 16:16:05 1996

Evalua Continuing Calibration Report

Data File : K:\CHEMSTN\GCV\DATA\QV0539\GCV5825.D

Vial: 2 Acq On : 06 May 96 12:01 PM Operator: JBRIESE

Sample : CCV#1-BTEXM-50PPB Inst : GCV Misc : GCV-0101; VV050696 Multiplr: 1.00

Method : K:\CHEMSTN\GCV\METHODS\CALCURVS\U4 Title : PVOC in Soil; Calib. Date 4/29/96 Method : K:\CHEMSTN\GCV\METHODS\CALCURVS\042996.M

Last Update : Mon Apr 29 12:12:54 1996 Response via : Multiple Level Calibration

_		Compound	AvgRF	CCRF	%Diff
2 3 4 5 6 7 8 9	T T T	MTBE BENZENE aaa-Trifluorotoluene TOLUENE ETHYLBENZENE M-PXYLENE 0-XYLENE BROMOFLUOROBENZENE 135-TRIMETHYLBENZENE 124-TRIMETHYLBENZENE	1.578 526.128 1.294 857.177 1.188 1046.735 893.561 973.952	537.590 E3 1.451 E6 505.110 E3 1.216 E6 845.971 E3 1.087 E6 5 941.779 E3 913.193 E3 1065.271 E3 786.215 E3	4.5 8.1 4.0 6.0 1.3 8.5 10.0 -2.2 -9.4

(#) = Out of Range GCV5683.D 042996.M

SPCC's out = 0 CCC's Mon May 20 16:20:14 1996 SPCC's out = 0 CCC's out = 0

Response Factor Report G

Method : K:\CHEMSTN\GCV\METHODS\PVOCSOIL.M : PVOC in Soil; Calib. Date: 5/7/96 Title

Last Update : Tue May 14 13:26:55 1996 Response via : Initial Calibration

Calibration Files

2ppb =GCV5853.D =GCV5854.D 10 =GCV5855.D

50 =GCV5856.D 100 =GCV5857.D

RT	Compound	2ppb	5	10	50	100	Avg RF	%RSD
6)10.12 7)10.73 8)11.61 9)12.73	MTBE BENZENE aaa-Trifluorotoluene TOLUENE ETHYLBENZENE M-PXYLENE 0-XYLENE BROMOFLUOROBENZENE 135-TRIMETHYLBENZENE	1.3 411.0 1.1 803.5 1.2 1.1 989.4 848.6	1.2 362.4 1.0 768.0 1.1 1.0 932.4 828.5	1.2 444.2 1.1 799.2 1.1 1.0 911.8 956.6	1.2 425.4 1.1 880.8 1.1 1.0 938.1 1155.2	1.2 412.4 1.1 841.0 1.1 0.9 906.0	458.3 E3 1.2 E6 411.1 E3 1.1 E6 818.5 E3 1.1 E6 1.0 E6 935.5 E3 3 980.0 1	7.37 2.80 5.30 4.04 7.47 3.53

(#) = Out of Range

PVOCSOIL.M

Mon May 20 16:00:48 1996

Evalua Continuing Calibration Re ort

Data File: K:\CHEMSTN\GCV\DATA\QV0539\GCV5839.D Vial: 18

Acq On : 06 May 96 08:52 PM Operator: JBRIESE

Sample : CCV#2-BTEXM-50PPB Inst : GCV Misc : GCV-0101; VV050696 Multiplr: 1.00

Method : K:\CHEMSTN\GCV\METHODS\CALCURVS\042996.M

Title : PVOC in Soil; Calib. Date 4/29/96 Last Update : Mon Apr 29 12:12:54 1996

Response via : Multiple Level Calibration

		Compound	AvgRF	CCRF	%Dev
1	t	MTBE		631.477	
2	T S	BENZENE aaa-Trifluorotoluene	1.578	1.641 591.363	
4	T	TOLUENE	1.294	1.403	
5	${f T}$	ETHYLBENZENE	857.177	915.225	E3 -6.8
6	\mathbf{T}	M-PXYLENE	1.188	1.267	E6 -6.7
7	T	0-XYLENE	1046.73	5 1136.82	20 E3 -8.6
8	S	BROMOFLUOROBENZENE	893.561	1021.009	9 E3 -14.3
9	T	135-TRIMETHYLBENZENE	973.952	1196.793	B E3 -22.9#
10	T	124-TRIMETHYLBENZENE	700.770	898.668	E3 -28.2#

(#) = Out of Range SPCC's out = 0 CCC's out = 0GCV5683.D 042996.M Mon May 20 16:22:55 1996

dy Record	Document Control No.:		Lab. Reference No. or Episode No.:			Sold Section	Down or the same		No Secondary		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× /	× 7/	7 X									Special Instructions:		ion of Shipping Container: Ice Present ir		i
Custody			1		125	Sample Type	Э	jiso	sas Somp		ベト	\ <u> </u>	X	×									Spec	I		-	XX XX
Chain of			\$,	00/	Sample	Matrix		olupi. bilos	> ×	×	×	×	×											Date/Time	Date/Time	
and		ý	Carte	1	44 1	0 7	2	es	ed F	14/4	1345	0730	1345						2						_0.		
Analysis		A	West	-	14011011011		7	Samp	Collected	Shlei			, ,	5/2/56				5	X	y			(9	gnature)	(signature)
I_		HZ!	26 6	T-1	シインしてい	.	Saul!	oth	2			7					1/2/2							-	3		(si
Request for Chemica		$\sum_{}^{}$ $\lambda_{}$ too	S	te/Zip		Project N		Sample Depth	(in feet)			' \					7								Received By:	Received By:	
nest f		Laboratory	Address	City/State/Zip	Telenhone	212		S	i i	~	~	_	-												2		-
Rec					1			Event	Yeav	1456	(988)	9331	9331	9531								17			Date/Time <i>₹/1/6/</i> 1 % 2	ate/T	
		uite 200	6210		Alica		Ì	Sample Event	To io	1	1	1	ĺ	١	/							11 11	a MAN	4			(ain
	McDonnell	Consultants, Inc.	Overland Park, Kansas 66210 [el: (816) 333-8787	822-3463	M Grea	1// Sagu	or SWMU Name:	ımber	Sample	9-		-/	. ERG	96							,		(signature):	(signature):			(signature)
	-X	Waste Con	Verland Page (816) 3:	.ax: (816)	Attention:	Project Number	ite, Group,	nple Nu	Sample	~	MO31-	IM030-	-m 031-										Sampler (sig	Sampler (sign	Relinquished	Relinquished By:	

May 30, 1996

Burns & McDonnell Scott Kolb 999 Oakmont Plaza Drive

Westmont, IL 60559

Dear Scott Kolb:

Please find enclosed the analytical results of the samples received at our laboratory on May 06, 1996. This report contains sections addressing the following information at a minimum:

-Definitions

-Analytical Results

-Analytical Methodology -State certifications

-Chain-of-custody (if applicable)

IKA Project#: L72960749

Client Project: 9

95-465-4-501

Purchase Order#:

TEA Quote#:

Site:

Copies of this analytical report and supporting data are maintained in our files for three years; samples are retained for two weeks unless special arrangements have been made. Unless specifically indicated, all analytical testing was performed at this laboratory and no portion of the testing was subcontracted.

We appreciate your selection of our services and welcome any questions or suggestions you may have relative to this report. Please contact Jim Dowse at (800) 933-2580 for any additional information. Thank you for utilizing our services, we hope you will consider us for your future analytical needs.

I have reviewed and approved the enclosed data for final release.

Sincerely

Larry D. Lewis

Director of Operations IEA-Illinois Laboratory

Monroe, Connecticut 203-261-4468 N. Billerica, Massachusetts 508-667-1400 Whippany, New Jersey 201-428-8181 Cary, North Carolina 919-677-0090

Definitions of Data Qualifiers

Organic Analysis

- B This analyte was detected in the method blank associated with this sample. The concentration reported in the method blank is suspected to contribute to the reported concentration of the analyte in the sample.
- E The concentration reported for this compound exceeds the calibration range of the instrument.
- H This sample had one or more surrogate recoveries above the acceptance criteria due to coelution with a nontarget compound.
- J The reported concentration for this compound is an estimated value. When associated with tentatively identified compounds (TICs), the result is quantitated based on a response factor of 1. When the flag is associated with a calibrated target compound, the compound has been positively identified and the reported concentration is above the method detection limit (MDL), but below the practical quantitation limit (PQL).
- L This sample had one or more surrogate recoveries below the acceptance criteria due to matrix effects. This effect was confirmed through a second analysis of the sample.
- LI The recovery of the internal standard corresponding to this compound did not meet the acceptance criteria due to matrix effects. This effect was confirmed through a second analysis of the sample.
- T1 The chromatographic profile of this sample does not match that of a gasoline standard. Another unidentifiable petroleum product is present in this sample. Quantitation is based on a gasoline standard calibration.
- T2 The chromatographic profile of this sample does not match that of a diesel fuel standard. Another petroleum product is present in this sample. Quantitation is based on a diesel fuel standard calibration.
- U This compound was not detected in the sample above the PQL.
- UD This compound was not detected above the elevated PQL in this diluted analysis.

Inorganic Analysis

- E The reported value was estimated due to the presence of interference.
- M Duplicate injection precision was not met.
- N Spiked sample recovery was not within control limits.
- S The reported value was determined by the Method of Standard Additions(MSA).
- W Post digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- * Duplicate analysis was not within control limits.
- + Correlation Coefficient for the MSA is less than 0.995.

and the late of the control of the